211 research outputs found

    Relevance of Structural Brain Connectivity to Learning and Recovery from Stroke

    Get PDF
    The physical structure of white matter fiber bundles constrains their function. Any behavior that relies on transmission of signals along a particular pathway will therefore be influenced by the structural condition of that pathway. Diffusion-weighted magnetic resonance imaging provides localized measures that are sensitive to white matter microstructure. In this review, we discuss imaging evidence on the relevance of white matter microstructure to behavior. We focus in particular on motor behavior and learning in healthy individuals and in individuals who have suffered a stroke. We provide examples of ways in which imaging measures of structural brain connectivity can inform our study of motor behavior and effects of motor training in three different domains: (1) to assess network degeneration or damage with healthy aging and following stroke, (2) to identify a structural basis for individual differences in behavioral responses, and (3) to test for dynamic changes in structural connectivity with learning or recovery

    Advances in noninvasive myelin imaging

    Get PDF
    Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy. Here, we offer a nontechnical review of MRI techniques developed to specifically monitor myelin such as magnetization transfer (MT) and myelin water imaging (MWI). We further summarize recent studies that employ these methods to measure myelin in relation to development and aging, learning and experience, and neuropathology and psychiatric disorders

    Associations between fitness, physical activity and mental health in a community sample of young British adolescents: baseline data from the Fit to Study trial

    Get PDF
    Objectives. To examine relationships between fitness, physical activity and psychosocial problems among English secondary school pupils and to explore how components of physically active lifestyles are associated with mental health and well-being. Methods. A total of 7385 participants aged 11–13 took a fitness test and completed self-reported measures of physical activity, attitudes to activity, psychosocial problems and self-esteem during the Fit to Study trial. Multilevel regression, which modelled school-level cluster effects, estimated relationships between activity, fitness and psychosocial problems; canonical correlation analysis (CCA) explored modes of covariation between active lifestyle and mental health variables. Models were adjusted for covariates of sex, free school meal status, age, and time and location of assessments. Results. Higher fitness was linked with fewer internalising problems (β=−0.23; 95% CI −0.26 to −0.21; p<0.001). More activity was also related to fewer internalising symptoms (β=−0.24; 95% CI −0.27 to −0.20; p<0.001); the relationship between activity and internalising problems was significantly stronger for boys than for girls. Fitness and activity were also favourably related to externalising symptoms, with smaller effect sizes. One significant CCA mode, with a canonical correlation of 0.52 (p=0.001), was characterised high cross-loadings for positive attitudes to activity (0.46) and habitual activity (0.42) among lifestyle variables; and for physical and global self-esteem (0.47 and 0.42) among mental health variables. Conclusion. Model-based and data-driven analysis methods indicate fitness as well as physical activity are linked to adolescent mental health. If effect direction is established, fitness monitoring could complement physical activity measurement when tracking public health

    White matter abnormalities in methcathinone abusers with an extrapyramidal syndrome

    Get PDF
    Funding Information: National Institute for Health Research Oxford Biomedical Research Centre (to H.J.B. and C.J.S.); the Wellcome Trust (to H.J.B.) and the European Social Fund (to A.S.). Copyright: Copyright 2017 Elsevier B.V., All rights reserved.We examined white matter abnormalities in patients with a distinctive extrapyramidal syndrome due to intravenous methcathinone (ephedrone) abuse. We performed diffusion tensor imaging in 10 patients and 15 age-matched controls to assess white matter structure across the whole brain. Diffuse significant decreases in white matter fractional anisotropy, a diffusion tensor imaging metric reflecting microstructural integrity, occurred in patients compared with controls. In addition, we identified two foci of severe white matter abnormality underlying the right ventral premotor cortex and the medial frontal cortex, two cortical regions involved in higher-level executive control of motor function. Paths connecting different cortical regions with the globus pallidus, the nucleus previously shown to be abnormal on structural imaging in these patients, were generated using probabilistic tractography. The fractional anisotropy within all these tracts was lower in the patient group than in controls. Finally, we tested for a relationship between white matter integrity and clinical outcome. We identified a region within the left corticospinal tract in which lower fractional anisotropy was associated with greater functional deficit, but this region did not show reduced fractional anisotropy in the overall patient group compared to controls. These patients have widespread white matter damage with greatest severity of damage underlying executive motor areas.Peer reviewe

    Changes in functional connectivity and GABA levels with long-term motor learning

    Get PDF
    Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) to assess functional connectivity and MR spectroscopy to quantify GABA in primary motor cortex (M1) before and after a 6 week regime of juggling practice. Participants practiced for either 30 min (high intensity group) or 15 min (low intensity group) per day. We hypothesized that different training regimes would be reflected in distinct changes in brain connectivity and local inhibition, and that correlations would be found between learning-induced changes in GABA and functional connectivity. Performance improved significantly with practice in both groups and we found no evidence for differences in performance outcomes between the low intensity and high intensity groups. Despite the absence of behavioral differences, we found distinct patterns of brain change in the two groups: the low intensity group showed increases in functional connectivity in the motor network and decreases in GABA, whereas the high intensity group showed decreases in functional connectivity and no significant change in GABA. Changes in functional connectivity correlated with performance outcome. Learning-related changes in functional connectivity correlated with changes in GABA. The results suggest that different training regimes are associated with distinct patterns of brain change, even when performance outcomes are comparable between practice schedules. Our results further indicate that learning-related changes in resting-state network strength in part reflect GABAergic plastic processes

    Fit to Study: Reflections on designing and implementing a large-scale randomized controlled trial in secondary schools

    Get PDF
    Background. The randomised controlled trial (RCT) design is increasingly common among studies seeking good-quality evidence to advance educational neuroscience, but conducting RCTs in schools is challenging. Fit to Study, one of six such trials funded by the Education Endowment Foundation and Wellcome Trust, tested an intervention to increase vigorous physical activity during PE lessons on maths attainment among pupils aged 12–13. This review of designing and conducting an RCT in 104 schools is intended as a resource on which researchers might draw for future studies. Method. We consider intervention design and delivery; recruitment, retention, trial management, data collection and analysis including ethical considerations and working with evaluators. Results. Teacher training, intervention delivery and data collection during large-scale RCTs require a flexible approach appropriate to educational settings, which in turn entails planning and resources. Conclusion. Simple interventions, with few outcome measures and minimal missing data, are preferable to more complex designs

    Normalisation of brain connectivity through compensatory behaviour, despite congenital hand absence

    Get PDF
    Previously we showed, using task-evoked fMRI, that compensatory intact hand usage after amputation facilitates remapping of limb representations in the cortical territory of the missing hand (Makin et al., 2013a). Here we show that compensatory arm usage in individuals born without a hand (one-handers) reflects functional connectivity of spontaneous brain activity in the cortical hand region. Compared with two-handed controls, one-handers showed reduced symmetry of hand region inter-hemispheric resting-state functional connectivity and corticospinal white matter microstructure. Nevertheless, those one-handers who more frequently use their residual (handless) arm for typically bimanual daily tasks also showed more symmetrical functional connectivity of the hand region, demonstrating that adaptive behaviour drives long-range brain organisation. We therefore suggest that compensatory arm usage maintains symmetrical sensorimotor functional connectivity in one-handers. Since variability in spontaneous functional connectivity in our study reflects ecological behaviour, we propose that inter-hemispheric symmetry, typically observed in resting sensorimotor networks, depends on coordinated motor behaviour in daily life

    Network-level reorganisation of functional connectivity following arm amputation

    Get PDF
    AbstractOne of the most striking demonstrations of plasticity in the adult human brain follows peripheral injury, such as amputation. In the primary sensorimotor cortex, arm amputation results in massive local remapping of the missing hands' cortical territory. However, little is known about the consequences of sensorimotor deprivation on global brain organisation. Here, we used resting-state fMRI to identify large-scale reorganisation beyond the primary sensorimotor cortex in arm amputees, compared with two-handed controls. Specifically, we characterised changes in functional connectivity between the cortical territory of the missing hand in the primary sensorimotor cortex (‘missing hand cortex’) and two networks of interest: the sensorimotor network, which is typically strongly associated with the hand cortex, and the default mode network (DMN), which is normally dissociated from it. Functional connectivity values between the missing hand cortex and the sensorimotor network were reduced in amputees, and connectivity was weaker in individuals amputated for longer periods. Lower levels of functional coupling between the missing hand cortex and the sensorimotor network were also associated with emerged coupling of this cortex with the DMN. Our results demonstrate that plasticity following arm amputation is not restricted to local remapping occurring within the sensorimotor homunculus of the missing hand but rather produces a cascade of cortical reorganisation at a network-level scale. These findings may provide a new framework for understanding how local deprivation following amputation could elicit complex perceptual experiences of phantom sensations, such as phantom pain

    A critical evaluation of systematic reviews assessing the effect of chronic physical activity on academic achievement, cognition and the brain in children and adolescents: A systematic review

    Get PDF
    Background. International and national committees have started to evaluate the evidence for the effects of physical activity on neurocognitive health in childhood and adolescence to inform policy. Despite an increasing body of evidence, such reports have shown mixed conclusions. We aimed to critically evaluate and synthesise the evidence for the effects of chronic physical activity on academic achievement, cognitive performance and the brain in children and adolescents in order to guide future research and inform policy. Methods. MedLine, Embase, PsycINFO, Cochrane Library, Web of Science, and ERIC electronic databases were searched from inception to February 6th, 2019. Articles were considered eligible for inclusion if they were systematic reviews with or without meta-analysis, published in peer-reviewed (English) journals. Reviews had to be on school-aged children and/or adolescents that reported on the effects of chronic physical activity or exercise interventions, with cognitive markers, academic achievement or brain markers as outcomes. Reviews were selected independently by two authors and data were extracted using a pre-designed data extraction template. The quality of reviews was assessed using AMSTAR-2 criteria. Results. Of 908 retrieved, non-duplicated articles, 19 systematic reviews met inclusion criteria. One high-quality review reported inconsistent evidence for physical activity-related effects on cognitive- and academic performance in obese or overweight children and adolescents. Eighteen (critically) low-quality reviews presented mixed favourable and null effects, with meta-analyses showing small effect sizes (0.1–0.3) and high heterogeneity. Low-quality reviews suggested physical activity-related brain changes, but lacked an interpretation of these findings. Systematic reviews varied widely in their evidence synthesis, rarely took intervention characteristics (e.g. dose), intervention fidelity or study quality into account and suspected publication bias. Reviews consistently reported that there is a lack of high-quality studies, of studies that include brain imaging outcomes, and of studies that include adolescents or are conducted in South American and African countries. Conclusions. Inconsistent evidence exists for chronic physical activity-related effects on cognitive-, academic-, and brain outcomes. The field needs to refocus its efforts towards improving study quality, transparency of reporting and dissemination, and is urged to differentiate between intervention characteristics for its findings to have a meaningful impact on policy

    Perceptually relevant remapping of human somatotopy in 24 hours

    Get PDF
    Experience-dependent reorganisation of functional maps in the cerebral cortex is well described in the primary sensory cortices. However, there is relatively little evidence for such cortical reorganisation over the short-term. Using human somatosensory cortex as a model, we investigated the effects of a 24 hr gluing manipulation in which the right index and right middle fingers (digits 2 and 3) were adjoined with surgical glue. Somatotopic representations, assessed with two 7 tesla fMRI protocols, revealed rapid off-target reorganisation in the non-manipulated fingers following gluing, with the representation of the ring finger (digit 4) shifted towards the little finger (digit 5) and away from the middle finger (digit 3). These shifts were also evident in two behavioural tasks conducted in an independent cohort, showing reduced sensitivity for discriminating the temporal order of stimuli to the ring and little fingers, and increased substitution errors across this pair on a speeded reaction time task
    corecore